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Amplitude equations for systems with long-range interactions
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We derive amplitude equations for interface dynamics in pattern forming systems with long-range interac-
tions. The basic condition for the applicability of the method developed here is that the bulk equations are
linear and solvable by integral transforms. We arrive at the interface equation via long-wave asymptotics. As an
example, we treat the Grinfeld instability, and we also give a result for the Saffman-Taylor instability. It turns
out that the long-range interaction survives the long-wave limit and shows up in the final equation as a nonlocal
and nonlinear term, a feature that to our knowledge is not shared by any other known long-wave equation. The
form of this particular equation will then allow us to draw conclusions regarding the universal dynamics of
systems in which nonlocal effects persist at the level of the amplitude description.
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I. INTRODUCTION

A number of pattern formation problems involving an i
terface are computationally difficult despite the fact that
bulk equations are linear. Examples include Laplacian
namics~diffusion-limited aggregation, limit of vanishing Pe´-
clet number in dendritic growth!, flow problems in the
Stokes approximation, and elastic problems. They are d
cult because of the long-range self-interaction of the in
face mediated by the external field. With the availability
modern computer power, these problems can usually
solved to good accuracy in two dimensions. But none
them has been successfully treated on a large scale in
dimensions so far.

Whenever an interface equation can be derived, this of
the advantage of better tractability, both numerically a
analytically. Interface equations for three-dimensional s
tems are two dimensional, rendering much larger syste
accessible than bulk simulations@1#. For problems contain-
ing a length scale restricting the interaction distance, suc
the diffusion length in solidification problems, interfac
equations arelocal in the long-wave limit@2,3#, i.e., they are
partial differential equations. The Laplace or Lame´ equa-
tions, however, do not have a cutoff distance. Hence, i
interesting and important to investigate how this feature
fects the long-wave limit, if any. There have been interfa
equations containing nonlocal butlinear terms in the litera-
ture before@4–6#. As it will turn out, the nonlocal aspects o
the system we consider are much more ferocious, leadin
terms that are both nonlocaland nonlinear. We are also
aware of the case of a previously derived amplitude equa
containing nonlocal nonlinearities@7,8#. However, the equa
tion in question is weakly nonlinear whereas we will obtain
strongly nonlinear equation.

Let us recall that close to the instability threshold for t
merging of order, systems exhibiting a type Is instability in
the nomenclature of Cross and Hohenberg@9#, i.e., an insta-
bility at finite wave number, are all expected to be describ
by a universal amplitude equation of the Ginzburg-Land
type. Otherwise, when the critical wave number approac
1063-651X/2002/66~2!/026102~9!/$20.00 66 0261
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zero ~type IIs) the dynamics is described by a long-wa
equation such as the Kuramoto-Sivashinsky~KS! equation. A
prerequisite for these derivations is that nonlocal interacti
are screened off beyond some length~small in comparison
with the inverse of the bifurcation wave number. When lon
range interactions~e.g., in electrostatic, magnetic, elastic sy
tems, etc.! are effectively present, no universal equation h
been known as yet for the latter case. The results of@7,8#
pertain to the former case, i.e., they constitute a genera
tion of the Ginzburg-Landau description including nonloc
interactions. We derive here a universal form of dynamics
the long-wavelength limit when long-range interactions p
vail and obtain a result that is complementary to t
Kuramoto-Sivashinsky description. The derivation is exe
plified on a system undergoing a surface instability due
elastic stress. Besides the universal feature of the reso
question, we present the practical virtue of this strategy.

Applying our approach to a particular system, a uniaxia
strained solid undergoing the Grinfeld instability@10,11#, a
problem that has recently attracted the community of cry
growth @12–14#, we obtain an equation that, when truncat
to the leading-order nonlinearities should provide an
ample of the universal dynamics. As we shall see, this eq
tion contains fewer parameters than to be expected, whic
most likely due to the fact that in the case of the Grinfe
instability the dynamics is variational. Introducing an add
tional free parameter, we are able to give the generic form
the universal equation. A derivation of this equation fro
symmetry considerations will be presented elsewhere@15#.

The paper is organized as follows. In Sec. II, we wr
down the model equations for the elastically strained sys
and introduce the appropriate rescaling to perform
asymptotic analysis. Section III describes the asymptotic
pansion and matching procedure and presents the final in
face equation for two dynamical situations corresponding
conservative and to nonconservative dynamics. In Sec.
we give some simulation results for these equations. Sec
V contains a discussion of universality aspects and gives
example of a simulation of the generic equation. Finally,
©2002 The American Physical Society02-1
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will briefly summarize some conclusions and give an outlo
in Sec. VI.

II. MODEL EQUATIONS AND
NONDIMENSIONALIZATION

The physics of the Grinfeld instability has been discus
in some detail in Ref.@16#. We consider the case of a solid
contact with its melt; let us call the interface positionz(x,t)
~i.e., we restrict ourselves to two dimensions!. It is related to
the stress distribution via@12,16–18#:

z t~x,t !

A11zx
2

52
1

krs
S 12n2

2E
@~s tt2snn!

22s0
2#1gk1Drgz D .

~1!

Herein, 1/k is the mobility,rs the density of the solid,E is
Young’s modulus,n the Poisson ratio,g is the surface ten-
sion,Dr the density contrast between solid and liquid, ang
the gravitational acceleration.k52zxx /(11zx

2)3/2 is the in-
terface curvature, and partial derivatives ofz are denoted by
subscripts.s tt andsnn are tangential and normal stresses
the interface, i.e.,snn5nis i j nj , s tt5t is i j t j , whereni and
t i are the components of the normal and the tangent to
interface. Bys0, we denote the externally imposed uniax
stress, and the interface position is measured from the e
librium position of a planar interface.~Setting k50 and
us tt2snnu5us0u in Eq. ~1! leads to a steady statez50.!
Equation~1! describes the mass current density that is p
portional to chemical potential changes produced by str
capillarity, and gravity.

To solve this equation, it must be supplemented with
equations describing mechanical equilibrium. Assuming
ear isotropic elasticity,

s i j 5
E

11n S ui j 1
n

122n
ukkd i j D , ~2!

whereui j is the strain tensor, expressible via the elastic d
placementsui according toui j 5

1
2 (] iuj1] jui), the condition

for mechanical equilibrium,] js i j 50 ~neglecting gravity in
the bulk as a small cross effect!, takes the form of the Lame´
equations:

~122n!¹2u1“~“•u!50. ~3!

Note that the static version is sufficient since all interfa
motions are slow in comparison with sound propagati
Boundary conditions are

snn5snt50 ~4!

at the interface, periodicity in thex direction with some pre-
scribed wavelength 2p/q, and

s i j →s0d ixd jx for z→2`. ~5!

Herein,snt5nis i j t j is the shear stress at the interface, wh
must evidently vanish if the latter is in contact with a flui
Another cross effect has been neglected here, viz. tha
02610
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capillary overpressure, leading to a curvature depend
jump of snn across the interface. An overall constant pre
sure, not influencing the dynamics of the interface, has b
subtracted out of the definition ofsnn .

Due to the free boundary character, Eqs.~2! through~5!
do not completely specify the problem and there is a need
an additional condition, which is just Eq.~1! expressing the
fact that the chemical potential difference between solid a
liquid is proportional to the normal mass current across
interface. This means that we assume the interface to
microscopically rough~so that a linear relation holds be
tween the current and its conjugate variable, the chem
potential difference! and the solid to be in contact with it
liquid or vapor.

Note, however, that for the solution of the elastic proble
at one instant of time with given interface position we do n
need Eq.~1! ~since we have neglected sound propagat
effects!. This suggests to attack the problem in two stag
first solve the elastic equations, then move the interface
cording to the elastic fields, and repeat the procedure for
new interface position.

The question is how to obtain a closed interface equat
and to identify its generic form. In order to proceed, we fi
nondimensionalize the above equations by introducing
length scales,15gE/s0

2(12n2) ~the Griffith length @19#,
apart from a factor of 4/p) and ,25(12n2)s0

2/2DrgE ~a
gravity length! as well as a time scalet5krs,1

2/g @18#. Then
we use Hooke’s law~2! to express stresses by strains a
reduce the latter by a dimensionless factorE/(11n)s0. We
find

z t~x,t !

A11zx
2

52H 1

2
@~utt2unn!

221#1k1azJ , ~6!

wherea5,1/2,2, i.e.,a>0. A linear stability analysis of the
full set of Eqs.~2! through~6! yields the dispersion relation
@18#

v52uqu2q22a, ~7!

wherev andq are the nondimensional growth rate and wa
number, respectively. The absolute value ofq arises, because
the eigensolutions of the elastic problem carry a fac
exp(6iqx1uquz), approaching zero forz→2`. A linear in-
stability will arise fora,1.

As is obvious from the derivation, to be able to manife
itself the instability requires mass transport. Besides the c
described of a liquid in contact with its melt, correspondi
to nonconserved dynamics, another situation is of particu
interest, due to possible applications in epitaxial growth. T
is a solid in vacuum. Material transport will ordinarily b
dominated by surface diffusion then. Consequently, we h
conserved dynamics, with Eq.~6! replaced by

z t~x,t !

A11zx
2

5
1

A11zx
2

]x

1

A11zx
2

3]xH 1

2
@~utt2unn!

221#1k1azJ , ~8!
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and the dispersion relation~7! is simply multiplied by a fac-
tor q2 on the right-hand side. Since the gravity term is n
mally negligible in experiments on epitaxial growth~unless a
temperature gradient mimics a strong gravitational fi
@16,17#!, we may set a50 in this case, obtaining a
parameter-free equation.

As it turns out, the asymptotic analysis can be perform
together for both dynamical situations, since its most ext
sive part consists in solving the elastic problem~which is the
same for both cases!. Only afterwards is the solution inserte
into the equation describing the interface evolution. At int
mediate steps of the calculation, we will therefore wr
down equations for the nonconservative case only, but
shall give the final interface equation for both cases.

Let us now consider a situation, where,1 is very large,
i.e., we introduce a small parametere, setting,15O(1/e).
This corresponds to a very small stress, but we can neve
less reach an unstable state by reducing gravity or the de
difference, so,2 becomes larger than,1/2.

Then it will be natural to measure length scales in units
e,1 @which is O(1)# rather than,1 and time scales in units
of e2t. Coordinates are transformed according tox̃
5x/e, z̃5z/e, and t̃ 5t/e2. Referring to the new coordi
nates, the dispersion relation transforms intoṽ52euq̃u2q̃2

2e2a. For smalle, each term in this relation must behave
e2, hence we have for the wave numberq̃;e. A long-wave
equation should therefore be derivable. To perform
asymptotics, we introduce another set of coordinates viX

5e x̃, Z5 z̃2z(x,t), andT5e2 t̃ , conveniently mapping the
interface position toZ50. X and T are slow variables. We
setU5ux2(12n)X andV5uz1n(Z1z), whereux anduz
are the displacements, which makes the boundary condit
at 2` homogeneous (U→0, V→0). The transformed Eqs
~1! and ~3! read

ezT~11e2zX
2 !3/252H 1

2 F ~12e2zX
2 !~11]XU2zX]ZU

2]ZV!12zX@]ZU1e2~]XV2zX]ZV!# G2

2
1

2
~11e2zX

2 !22ezXX~11e2zX
2 !1/2

1eaz~11e2zX
2 !2J , ~9!

~122n!]Z
2U1e2@2~12n!~]X2zX]Z!2U

1~]X2zX]Z!]ZV#50, ~10!

2~12n!]Z
2V1~]X2zX]Z!]ZU

1e2~122n!~]X2zX]Z!2V50, ~11!

and the boundary conditions at the interface (Z50) become
02610
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05~12n!]ZV1n]XU2~12n!zX]ZU1e2@~122n!

3~zX
22zX]XV!1~12n!zX

2~]ZV1]XU2zX]ZU !#,

~12!

05@]ZU1e2~]XV2zX]ZV!#~12e2zX
2 !

12e2zX~]ZV2]XU1zX]ZU21!. ~13!

Equations~9! through ~13! constitute our starting point fo
the asymptotic analysis to be carried out.

III. ASYMPTOTIC ANALYSIS

These equations are singular inZ, i.e., the boundary con
ditions at infinity, where the implicit assumptionZ5O(1)
does not hold anymore, can be satisfied only with the triv
solutionzX50. This difficulty usually does not appear wit
equations that have an internal length scale, in contrast to
elastic equations, which are devoid of such a scale. To o
come it, one introduces aninner region, whereZ5O(1), and
anouter region, whereh[eZ5O(1) @5#, attempting then to
match the solutions in their common domain of validity.
the inner region, Eqs.~10!–~13! hold, and solving the bulk
equations may be reduced to ordinary differential equati
in Z via expansion in powers ofe. In the outer region, de-
rivatives with respect toh andX are the same order of mag
nitude. Therefore, true partial differential equations have
be solved. It is here that the linearity of the Lame´ equations
becomes important, because it allows one to solve th
equations in terms of Fourier transforms. Nontrivial aspe
of the calculation then are largely due to the asympto
matching of real space functions with Fourier transforms

Denoting field variables in the outer region by small le
ters,u(X,h,T)5U(X,Z,T), v(X,h,T)5V(X,Z,T), we ob-
tain theouter equations

~122n!]h
2u12~12n!~]X2ezX]h!2u

1e~]X2ezX]h!]hv50, ~14!

~]X2ezX]h!]hu12~12n!e]h
2v

1e~122n!~]X2ezX]h!2v50, ~15!

the inner ones being given by Eqs.~10! and~11!. Expanding
the interface position and the fields in powers ofe, we find
that the expansion is singular in another sense. If it is
sumed thatz5O(1), nonlinear terms willnot arise in the
interface equation, a fact that can also be inferred from sy
metry considerations and power counting. Scalings that l
to a nontrivial result arez5O(e21), u5O(1), and v
5O(e21). We therefore write

z~X,T!5e21z21~X,T!1z0~X,T!1ez1~X,T!1••• ,
~16!

implying ] x̃z(X,T)5O(1). Next we set
2-3
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V~Z!5e21V21~Z!1V0~Z!1eV1~Z!1•••

5v~h!5e21v21~h!1v0~h!1ev1~h!1•••,

~17!

U~Z!5U0~Z!1eU1~Z!1•••

5u~h!5u0~h!1eu1~h!1•••, ~18!

where for brevity we have suppressed theX and T depen-
dences. We then obtain as matching conditions~taking into
account thee dependence ofh),

U0~Z!→u0~0! ~Z→`!, ~19!

V21~Z!→v21~0! ~Z→`!, ~20!

U1~Z!;Zu08~0!1u1~0! ~Z→`!, ~21!

V0~Z!;Zv218 ~0!1v0~0! ~Z→`!, ~22!
ch

r
w

02610
where the prime denotes a derivative with respect to the
gument (h). To the two leading orders, the inner equatio
are solved by

U0~X,Z,T!5B0~X,T!, ~23!

V21~X,Z,T!5D21~X,T!, ~24!

U1~X,Z,T!5ZA1~X,T!1B1~X,T!, ~25!

V0~X,Z,T!5ZC0~X,T!1D0~X,T!. ~26!

The outer equations need to be solved only at lowest orde
e. For brevity, we renamez21(X,T) back toz(X,T). Con-
fusion should not arise, since we will never needz0 nor z1. It
should be kept in mind, however, that the newz(X,T) is
O(1), because it is the prefactor ofe21. The outer solution
then reads
n—
u0~X,h,T!5
1

2pE2`

`

$a0~q,T!1b0~q,T!@h1z~X,T!#%eiqX1uqu[h1z(X,T)]dq, ~27!

v21~X,h,T!5
1

2pE2`

` H 2 i sgn~q!$a0~q,T!1b0~q,T!@h1z~X,T!#%1 i
324n

q
b0~q,T!J eiqX1uqu[h1z(X,T)]dq. ~28!

Using the boundary conditions~12! and ~13!, we can expressA1 andC0 by B0 andD21:

A1~X!5
1

~12n!~11zX
2 !2

$zX@2~12n!1~122n!zX
21„~12n!zX

2122n…B08~X!#2~12n2nzX
2 !D218 ~X!%, ~29!

C0~X!5
1

~12n!~11zX
2 !2

$zX
21@2n1~12n!zX

2 #@B08~X!1zX~X!D218 ~X!#%, ~30!

where we have left out theT dependence~which is ‘‘passively’’ present everywhere but important only in the final equatio
the Laméequations are always solved at a fixed time!.

The matching conditions at leading order give four equations expressingB0 , D21 , A1, and C0 by Fourier integrals
involving a0(q,T) andb0(q,T). For B0 andD21, these integrals are essentially shown in Eqs.~27! and~28!, we just need to
seth50 there. The two remaining equations read

A1~X!5
1

2pE2`

`

$a0~q!uqu1b0~q!@11uquz~X!#%eiqX1uquz(X)dq, ~31!

C0~X!5
1

2pE2`

`

$2 iqa0~q!2 ib0~q!@sgn~q!1qz~X!#1 i sgn~q!~324n!b0~q!%ei qX1uquz(X)dq. ~32!
So we have six equations altogether, viz., Eqs.~27!–~32!,
for the six unknown functionsB0 , D21 , A1 , C0 , a0, and
b0 @20#. Their solution determines the elastic fields, whi
then can be inserted into the interface equation~9!. However,
what we need is an explicit analytic solution. Its details a
technical, so we just give some essential steps. First,
rewrite the equations in terms of Laplace transforms~rather,
one-sided Fourier transforms!
e
e

â0~x![
1

2pE0

`

a0~q!eiqxdq, ~33!

b̂0~x![
1

2pE0

`

b0~q!eiqxdq, ~34!

for example,
2-4
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B0~X!5â0@X2 i z~X!#1z~X!b̂0@X2 i z~X!#1c.c.
~35!

Settingw5X1 iZ,

2â08~w![m~X,Z!1 in~X,Z!, ~36!

2b̂0~w![o~X,Z!1 ip~X,Z!, ~37!

with m, n, o, andp real functions, we can then reduce o
problem to just two ~real! equations involving complex
quantities. These are the Eqs.~29! and ~30! with all quanti-
ties expressed byâ08(w) and by b̂0(w), i.e., finally by
m, n, o, andp.

Introducing the abbreviations

l1~X!5
zX@222n1~122n!zX

2#

~12n!~11zX
2!2

, ~38!

l2~X!5
zX@22n1~12n!zX

2#

~12n!~11zX
2!2

, ~39!

l3~X!52
12n2nzX

2

~12n!~11zX
2!2

, ~40!

l4~X!5
zX

2

~12n!~11zX
2!2

, ~41!

l5~X!5
2n1~12n!zX

2

~12n!~11zX
2!2

, ~42!

l6~X!5
zX@2n1~12n!zX

2!

~12n!~11zX
2!2

, ~43!

these two equations become

@12l2~X!zX1~324n!l3~X!#o~X,2z!

1@2l2~X!1l3~X!zX#m~X,2z!

5l1~X!1@l2~X!2l3~X!zX#zoX~X,2z!1@21

1l2~X!zX1l3~X!#@n~X,2z!1zpX~X,2z!#

22~122n!l3~X!zXp~X,2z!, ~44!

@212l5~X!1l6~X!zX#m~X,2z!1@2l5~X!zX

1~324n!l6~X!#o~X,2z!

5l4~X!2@212l5~X!1l6~X!zX#zoX~X,2z!

12~122n!@12l6~X!zX#p~X,2z!1@l5~X!zX

1l6~X!#@n~X,2z!1zpX~X,2z!#, ~45!

where pX and oX denote the derivatives ofp(X,
2z), o(X,2z) with respect toX at fixedz. That is, we first
take the derivative and only then allowz5z(X).
02610
Since the four functions involved are real and imagina
parts of analytic functions, only two of them are indepe
dent. Indeed, we have

n~X,2z!52
1

pE2`

` ~X82X!m~X8,0!

~X82X!21z2
dX8, ~46!

p~X,2z!52
1

pE2`

` ~X82X!o~X8,0!

~X82X!21z2
dX8. ~47!

Equations~44! and~45!, being linear, can be solved formall
for o(X,2z) andm(X,2z). This leads to

o~X,2z!5r 1~X!@n~X,2z!1zpX~X,2z!#

1r 2~X!p~X,2z!1r 3~X!, ~48!

m~X,2z!5r 4~X!@n~X,2z!1zpX~X,2z!#

1r 5~X!p~X,2z!1r 6~X!zoX~X,2z!1r 7~X!,

~49!

where the functionsr 1 throughr 7 are given by

r 1~X!5
1

122n
, ~50!

r 2~X!5
2zX

~122n!~11zX
2 !

, ~51!

r 3~X!5
2zX

~122n!~11zX
2 !

, ~52!

r 4~X!50, ~53!

r 5~X!52
211n~11zX

2!

11zX
2

, ~54!

r 6~X!521, ~55!

r 7~X!52
zX

2

11zX
2

. ~56!

The computations leading from Eqs.~27! through~32! to
Eqs. ~48! and ~49! are straightforward but heavy. Some in
termediate steps@e.g., the simplification of ther i(X)# as well
as a verification of the whole calculation at the end ha
been done using computer algebra~MAPLE!. Due to the cho-
sen scalings~16!–~18!, Eqs.~48! and~49! constitute an exac
reformulation of the outer elastic problem, which is linear
u andv, so higher-order equations have the same form as
leading order ine. To obtain analytic results, we have t
employ some approximation. We assume thatz(X), the ex-
pansion coefficient ofe21, is itself a numerically small quan
tity. Then expressions, such as Eqs.~46! and ~47! become
Hilbert transforms. Denoting the Hilbert transform off (X)
by
2-5
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H@ f ~X!#[
1

p «2`

` f ~X8!

X82X
dX8, ~57!

where the integral is to be taken as a principal value,
indicated by the bar, we find, as the limitz!1 of Eqs.~48!
and ~49!,

o~X,0!52r 1~X!H@m~X,0!#2r 2~X!H@o~X,0!#1r 3~X!,
~58!

m~X,0!52r 5~X!H@o~X,0!#1r 7~X!. ~59!

This set of linear equations can be solved iteratively. Assu
ing, and this is the second approximation, thatzX(X) is also
numerically small, we may truncate the iteration after t
d
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n

f
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a
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first step, taking accurately into account only terms up
orderzX

2(X). UsingH$H@ f (X)#%52 f (X), we can solve the
truncated iteration to obtain explicit expressions f
o(X,0), m(X,0) that read

o~X,0!52~122n!r 3~X!1H@r 7~X!#, ~60!

m~X,0!52~122n!r 7~X!

22~12n!~122n!H@r 3~X!#. ~61!

Substitutingo, m, n52H@m#, and p52H@o# back into
the equations forA1 , C0 , B0, andD21, inserting these into
Eqs.~23!–~26! and then back into Eq.~9!, we finally obtain
the sought-for interface equation, in which we renameX into
x andT into t ~they are the same variables anyway!:
sper-
ceding
z t~x,t !

~11zx
2!1/2

5
1

2 H 12
1

~11zx
2!2 F ~12zx

2!S 11
2

p «2`

` zx~x8!

~x82x!@11zx~x8!2#
dx8D 1

4zx
2

11zx
2G 2J 1

zxx

~11zx
2!3/2

2az. ~62!

The arguments ofz (x or x8 and t) have been suppressed wherever possible without ambiguity.
The nonlocal term drives the instability. It is interesting to see whether Eq.~62! will reproduce acoarsening dynamicsof

the type discussed in Ref.@18#. For in that case whether a groove grows or shrinks does not depend on local quantities~such
as the curvature! alone. Hence, the scenario described cannot be expected from a merely local equation.

This is the melt-crystallization case@18#. It is easily checked that linearization of this equation produces the linear di
sion relation~7!. The corresponding equation with dynamics controlled by surface diffusion is obtained simply by pre
the right-hand side with the operator2@(11zx

2)21/2]x#
2:

z t~x,t !5]x

1

A11zx
2
]xS 1

2 H 1

~11zx
2!2 F ~12zx

2!S 11
2

p «2`

` zx~x8!

~x82x!@11zx~x8!2#
dx8D 1

4zx
2

11zx
2G 2J 2

zxx

~11zx
2!3/2

1az D .

~63!
n be
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For the system described by this equation, coarsening
namics does not yet seem to have been studied in the li
ture, therefore it will be briefly discussed in the followin
section.

IV. SOME SIMULATION RESULTS

Both Eqs.~62! and~63! have been simulated numericall
Figure 1 gives an example for period-doubling dynam
found in the nonconservative case when an initially perio
sinusoidal structure is submitted to a small perturbation
twice its basic periodicity.

A similar result is obtained for conservative dynamics a
the same parametera, see Fig. 2. In both cases,a was close
to 1, hence the instability was weak. For smaller values oa,
we found stronger differences between the behavior of
two systems. The main statement that can be made, how
is that in both of them similar coarsening scenarios are
erative, since coarsening allows a reduction of the ove
elastic energy. Because of the restriction that the aver
interface height has to remain constant in the conserva
y-
ra-

s
c
f

d

e
er,
-
ll
ge
e

case, in the latter coarsening proceeds more slowly, as ca
verified by comparison of Figs. 1 and 2.

In Fig. 3, we give the dynamics obtained from alocal
perturbation of a periodic interface. The process of coars
ing is more complex than the simple period-doubling s
nario suggested in Ref.@18#. Frustration effects come into
play when grooves compete via the nonlocal interaction, s
may happen that the next-nearest neighbor of the lead
groove is not a winner of the competition but rather the th
neighbor.

An extensive overview of the properties of Eqs.~62! and
~63! is not intended here. It will be the subject of a differe
publication@21#. Suffice it to say that we find these ampl
tude equations to reproduce several qualitative features o
dynamics of the system faithfully, includingnonlocally in-
duced coarsening. Differences with the full dynamics@18#
appear at large amplitudes. For vanishing gravity~i.e., a
50), the amplitude is not predicted to saturate in the f
model but does so in the amplitude equation. This is not
surprising given that the latter was derived assuming sm
2-6
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amplitudes@more precisely a small prefactor of theO(e21)
term in the amplitude expansion#. In principle, systematic
improvement is possible by continuing the iteration sche
truncated after the first step and including higher powers oz
and zx . In practice, this improvement results in addition
technical difficulties.

It is certainly not possible to claim genericity of Eqs.~62!
and~63!. Their derivation accounts for only the lowest-ord
~i.e., quadratic! nonlinearities exactly, while resummin
some nonlinearities to infinite order, which are presuma
specific for the elastic system. However, if there is a univ
sal amplitude equation for the systems considered, the
must contain the terms that our derivation produces exa
and it may be sufficient to consider just these terms.

V. GENERIC EQUATIONS

Before looking at the generic equation~s! derivable from
our particular case, let us briefly recapitulate the general s
ation concerning amplitude equations of universal validit

There is an overabundance of nonequilibrium syste
that spontaneously build up an organized pattern from
initially structureless state when they are taken sufficien
far from equilibrium @9#. Typical examples are present
hydrodynamical systems~e.g., Rayleigh-Be´nard convection!,
chemical reactions~e.g., Turing systems!, crystal growth~the
Mullins-Sekerka instability!, and so on. Despite the fact th
the underlying physical and chemical mechanisms are
verse in these systems, sufficiently close to the instab
threshold they all fall within the same universality class. L
qc denote the wave number of the emerging ordered patt
andh(x,t) a field describing the pattern~which can stand for
a component of the velocity field in hydrodynamics, or
interface position in crystal growth, etc.! along thex direc-
tion. Close to the threshold it is known@9# that h
;A(x,t)eiqcx, where eiqcx describes the~rapid! periodic
variation of the field due to the birth of order, whileA is a
slowly varying ~slow with respect toeiqcx) amplitude. A
obeys the following equation:

At5A1Axx2uAu2A, ~64!

where coefficients can always be set to unity by an appro
ate rescaling. This equation is universal in the sense tha
form depends only on translational and rotational symm
tries. It is usually referred to as theamplitude equationor the

FIG. 1. Period doubling for the interface profile. The initial in
terface is a cosine with wavelength 2p and amplitude 0.1, with
every odd minimum made deeper by 5%.a50.97 and time interval
between curves isDt510.0.
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Ginzburg-Landau equation@9#. The amplitude equation de
scribes the nature of the bifurcation from the structurel
state as well as instabilities of the ordered pattern with
spect to wavelength modulations~the Eckhaus instability
@9#!.

A description in terms of a slowly varying amplitud
makes sense only ifA varies in a slow fashion in compariso
with the pattern wavelength 1/qc . This requirement fails if
qc→0. In that case a separation between a fast and s
variation is illegitimate. One has thus to resort to a~singular!
expansion in the manner of Sivashinsky@4#. Becauseqc is
small, it provides an appropriate parameter of expans
This is also known as thelong-wavelength limit. In that limit
the field h obeys generically the Kuramoto-Sivashins
equation ~or the damped form withl the damping rate!,
which is written in the canonical form,

ht52lh2hxx2hxxxx1hx
2 . ~65!

Again this equation is universal@22,23# in the limit qc→0.
Because of the smallness ofqc ~long wavelength! any non-
local effect present in the original constitutive equations d
appears, and one recovers again a local equation. This is
only because a length scale is present and serves as a c
It is akin to the Debye length that makes the nonlocal
sponse function of the Coulomb gas local. There is, howe
a myriad of situations where long-range interactions pla
decisive role at all scales, and where it is hardly believa
that the above equation~or a similar equation! should arise
even in the long-wavelength limit. Typical situations wi
long-range interactions are electrostatic and magnetic
tems, problems with elastic fields, and so on. These syst
are devoid of an intrinsic length scale and it is highly des

FIG. 2. The initial interface is a cosine with wavelength 2p and
amplitude 0.1, with every odd minimum made deeper by 5%a
50.97 and time interval between curves isDt510.0.

FIG. 3. Coarsening of the interface profile. The fourth groove
the initial interface has been made deeper by 1%.a50.90 and
initial wavelength is 2p. Time interval between curves isDt
510.0.
2-7
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able to derive the appropriate generic form of the cor
sponding evolution equation in the long-wavelength limit.
derivation on the basis of a gradient expansion of an ap
priately chosen general nonlinear operator in the spirit
Ref. @22# will be given elsewhere@15#.

Here we argue that we can essentially read off the form
that equation from our result~62!. To this end, we simply
expand to second order inzx and drop all higher-order terms
As noted before, the kept terms are exact to that order.
‘‘generic’’ evolution equation with long-range interaction o
tained this way reads

z t52az1zxx2
2

p «2`

` zx~x8!

x82x
dx822zx

2

2
1

2S 2

p «2`

` zx~x8!

x82x
dx8D 2

. ~66!

Comparing this equation with the KS one, Eq.~65!, we see
that it is not exactly a generalization. Since the nonlocal te
drives the instability, the diffusive term need not be negat
and hence there is no need for a fourth-order term. Rat
Eq. ~66! is complementaryto the Kuramoto-Sivashinsky re
sult. Of course, the analog of Eq.~66! with a negative sign of
zxx may also appear and then the dispersion relation wo
need a different ultraviolet stabilization. If this term we
fourth order inq, we would obtain a linear term}zxxxx and
an equation that is a common generalization of the KS eq
tion and Eq.~66!.

Closer inspection shows that this equation can be on
particular case of the generic equation. For, in general,
amplitude equation will have coefficients in front of each
its six terms. Four of these can be made equal to one
division by a common prefactor and rescaling of space, ti
and the amplitudez itself. So our final equation should con
tain two independent nondimensional parameters, but it
only one,a. We suspect that this is due to a hidden symm
try, and a natural candidate for this symmetry is the va
tional nature of the basic evolution dynamics, Eqs.~1!–~3!.
In the fully generic equation, the additional parameter wo
be the ratio of the coefficients of the two nonlinear terms
is therefore easy to conjecture the form of this equation:

z t52az1zxx2
2

p «2`

` zx~x8!

x82x
dx822zx

2

2
b

2S 2

p «2`

` zx~x8!

x82x
dx8D 2

, ~67!

where we have introduced a second parameterb. The corre-
sponding universal equation for conservative dynam
would be obtained by preceding the complete right-hand s
of this equation by the operator2]x

2 .
We have simulated Eq.~66! and find that it still describes

coarsening, this time without saturation. An example o
simulation is displayed in Fig. 4. We see a single groove
‘‘finger’’ survive after a long time.
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On physical grounds, a nonsaturating amplitude is to
expected in some situations involving the Grinfeld instabil
@18#. Nevertheless, even in such a case one shoulda priori
not believe that a long-wave equation predicting an ev
increasing amplitude correctly describes the long-time
ymptotics, because the interface eventually leaves the
main of validity of the long-wave assumption. This happe
when the amplitude becomes larger than the wavelen
Therefore, an equation, such as Eq.~67! should be expected
to describe some intermediate-time asymptotics at best.

Things are different for other universal equations such
the Ginzburg-Landau equation~64! and the ~damped!
Kuramoto-Sivashinsky equation~65!, which usually do work
in the long-time limit. But this is due to the fact that in the
cases the final~average! amplitude does saturate and is pr
dicted to be small. However, if the cubic term in Eq.~64! is
positive, which necessitates a fifth-order description to
tain saturation of the amplitude, the final asymptotics can
ordinarily be trusted either, because then the amplitude m
not be small contrary to the original assumptions.

On the other hand, while any amplitude description lea
ing to nonsaturating amplitudes may seem self-defeating
this sense, there appear to be systems, where the doma
validity of the amplitude equation extends beyond that of
assumptions made in its derivation. Recently, a singu
long-wave equation was derived for step-flow growth wit
out desorption@24#. It predicts an amplitude growing as th
square root of time, i.e., without bounds. Currently availa
evidence on the basis of numerical solutions of the ex
model equations seems to corroborate that prediction. He
it is imperative to compare the long-time limit of the amp
tude description to whatever information is available ab
the long-time behavior of the full system, in order to ass
its validity.

Equation~67! should be thought of as being the first in
hierarchy of generic equations describing the initial and
termediate stages of evolution of a number of different s
tems. It is relevant to systems the linear dispersion relatio
which is quadratic. For other systems, such as the Saffm

FIG. 4. Evolution according to the generic equation~67!. a
50.8, b51.0. The initial interface is a random structure~visible
near z50). Time interval between curves isDt51.0 up to t
520.0, thereafterDt50.1, and the evolution is shown up tot
521.6. Note the spectacular acceleration of the ‘‘winning groov
2-8
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Taylor system, where the dispersion relation is cubic, we w
have a different linear term in the equation~the Laplacian of
a Hilbert transform!, and it is an interesting question wheth
the appearing nonlinearities will remain the same. Follow
the same strategy for the Saffman-Taylor problem, we ar
at the following equation:

z t52
V

p «2`

` zx~x8!

x82x
dx82

gB

p «
2`

` zxxx~x8!

x82x
dx81Vzx

2

1gBzxzxxx , ~68!

whereV is the flat-interface velocity,g the surface tension
and B5b2/12m with b the thickness of the Hele-Shaw ce
andm the fluid viscosity. Of course the linear terms are
ways quite trivial, but what is noteworthy is thatb50, i.e.,
the nonlinear terms are local, like in the KS equation.~Under
the usual assumptions for long-wave equations, the sec
local nonlinearity is small in comparison with the KS one!
We call this limit the Sivashinsky limit where nonlocality
present in the linear terms only, as was derived originally
Sivashinsky for flame propagation@4#. This contrasts with
our Eq. ~67! that involves in the long-wavelength limit
nonlinear and nonlocalterm. Therefore, this equation shou
introduce a new universality class with long-range inter
tions.

VI. CONCLUSIONS

To summarize, our method of derivation is applicab
whenever the general solution of the bulk equations can
found by a transformation method. Usually this means th
must belinear ~with constant coefficients!. A second condi-
02610
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tion, requiring that the dispersion relation can be transform
to long-wave form, should be always satisfiable. The gen
alization to three dimensions is straightforward, in princip
Our approach opens up the road to a realm of amplit
equations constituting a hitherto unknown type, the inve
gation of which seems worthwhile both from the mathema
cal and physical points of view; a new line of resear
should be stimulated.

The fact that the inner expansion produces only poly
mials in Z ~and hence the outer solution is identical to t
uniform approximation@25#! strongly suggests that the der
vation may even be achieved without the detour via a lo
wave approach, using a regular perturbation expansion o
outer equations. This would seem to indicate that we are
really dealing with an equation that is valid only in the lon
wave limit but rather with an ordinary~but strongly nonlin-
ear! amplitude equation valid at all wavelengths for sm
enough amplitudes, thusa posteriori justifying the formal
device of rescaling to large wavelengths. On the other ha
the first of our approximations corresponds to settinguquz
equal to zero in the exponents of Eqs.~27! and ~28!, which,
after taking into account all rescalings, means that the a
plitude is small compared to the wavelength.

Finally, the amplitude equation is much faster~and easier!
to handle numerically than previous schemes. Like the
equation, for example, its leading behavior described by
~67! should be generic for systems undergoing lon
wavelength instabilities with long-range interactions.
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